Question	Answer	Mark
1(a)(i)	Sketch of curved optic fibre with light ray undergoing at least one total internal reflection	B1
(a)(ii)	Light travels down (optic) fibres into or out of body To examine internal organ/part Light travels both ways into and out of body OR To destroy (cancerous) cells by heating OR Endoscope/fibre bundle inserted into body To view internal organ body part OR for keyhole surgery	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { (B1) } \end{aligned}$
(b)	Light in air: $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ Microwaves in vacuum: $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ Sound in steel: $6000 \mathrm{~m} / \mathrm{s}$	B1 B1 B1
(c)	$\mathrm{n}=$ speed in air/speed in glass (or rearranged) OR $1.5=3 \times 10^{8} /$ speed in glass (or rearranged) $2.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$
		Total: 9

2 (a clear attempt at semi circles, at least 3
same wavelength as incoming wavefronts, by eye
(b) speed \div wavelength or $20 \div 2.5$ or $v=f \lambda$ [1]
8 Hz or $8 \mathrm{~s}^{1}$ or 8 waves/second
(c) candidate's (b) OR "the same" OR nothing [1]
(d) low frequency signals have longer wavelength (than high frequency signals) OR high frequency signals have shorter wavelength
low frequency signals / long wavelength signals diffract more OR low frequency / short wavelength signals diffract less
3 (a (i) X-rays B1
(ii) Infra-red B1
(b) (i) $v=f \lambda$ in any form $\mathrm{OR} v \div \mathrm{f}$ OR $3.0 \times 10^{8} \div\left(2.45 \times 10^{9}\right)$ C1
0.12 m A1
(ii) $\quad(Q=) m l$ OR 150×330 C1
49000 (J) OR 49000 (J) OR 50000 (J)
$P=Q / t$ in any form $\operatorname{OR}(t=) Q / P$ OR (0.65×1100) OR 715 C1
69 s A1
[Total: 8]
$4 \quad$ (a (i) $2.0-4.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$ *Unit penalty applies B1
(ii) $\quad(f=) v / \lambda$ or $3.0 \times 10^{8} / 4.0 \times 10^{7}$ ecf from 6(a)(i) C1
$7.5 \times 10^{14} \mathrm{~Hz}$ *Unit penalty applies ecf from 6(a)(i) A1
(b) (i) 55° *Unit penalty applies B1
(ii) $\sin \mathrm{i} / \sin \mathrm{r}=\mathrm{n}$ or $\sin 55^{\circ} / 1.5$ or 0.54610 ecf from 6(b)(i) C1$33^{\circ}$ *Unit penalty appliesecf from 6(b)(i)A1
*Apply unit penalty once onl(a (i) light of a single wavelength / frequency ignore 'one colour'B1
(ii) $n=\sin i / \sin r$ OR $1.52=\sin 50 / \sin r$ OR $\sin r=\sin 50 / 1.52$ C1
30.26° at least 2 s.f. A1
(iii) ray closer to normal in block B1
ray parallel to incident ray emerging from block B1
(b) (i) $n=v_{\mathrm{A}} / v_{\mathrm{G}}$ OR $n=1.54 / v_{\mathrm{G}}$ OR $\quad v_{\mathrm{G}}=3 \times 10^{8} / 1.54$ C1 $1.948 \times 10^{8} \mathrm{~m} / \mathrm{s}$
(ii) ray with smaller angle of refraction than red in block i.e. violet ray under red ray B1 emerging ray parallel to incident ray B1
6 (a (i) sound B1
(ii) particle OR mechanical OR compression OR longitudinal OR matter wave B1
(iii) ultra violet/uv B1
(b) $v=f \lambda$ OR $\lambda=v / f$ B1
$3.0 \times 10^{8} / 2.5 \times 10^{8}$ OR $3.0 \times 10^{8}=2.5 \times 10^{8} \lambda$ C1
1.2 m A1
(a red ray refracted away from normal B1
violet ray refracted more than red ray in prism B1
violet ray further refracted from red ray to screen B1 3
(b) $1.52=\sin 40 \% \sin r$ M1
$\sin r=\sin 40^{\circ} / 1.52(=0.423)$ C1
$r=25^{\circ}$ A1
(c) (i) $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ A1
(ii) same as (i) A1 23
9 (a) expect two internal reflections at sensible angles11
(b) angle of incidence at Y greater than critical angle
(b) angle of incidence at Y greater than critical angle 1 1 total internal reflection occurs total internal reflection occurs 12

(c) (i) frequency $=$ velocity/wavelength or $1.9 \times 10^{8} / 3.2 \times 10^{7}$

(c) (i) frequency $=$ velocity/wavelength or $1.9 \times 10^{8} / 3.2 \times 10^{7}$ 1 1
$=5.9 \times 10^{14} \mathrm{~Hz}$
$=5.9 \times 10^{14} \mathrm{~Hz}$ 1 1

(ii) refractive index $=3 / 1.9$ or $1.9 / 3$

(ii) refractive index $=3 / 1.9$ or $1.9 / 3$ 1 1
$=1.58$ (no e.c.f.)
$=1.58$ (no e.c.f.) 1 1-4

