Question	Answer	Mark
1(a)((i)	Sketch of curved optic fibre with light ray undergoing at least one total internal reflection	B1
(a)(ii)	Light travels down (optic) fibre <u>s</u> into or out of body	B1
	To examine internal organ/part Light travels both ways into and out of body OR	B1 B1
	To destroy (cancerous) cells by heating OR	(B1) (B1)
	Endoscope / fibre bundle inserted into body To view internal organ body part OR for keyhole surgery	(B1) (B1)
(b)	Light in air: $3 \times 10^8 \text{ m/s}$ Microwaves in vacuum: $3 \times 10^8 \text{ m/s}$ Sound in steel: 6000 m/s	B1 B1 B1
(c)	n = speed in air/speed in glass (or rearranged) OR $1.5 = 3 \times 10^8$ /speed in glass (or rearranged) 2.0×10^8 m/s	C1 A1
		Total: 9

(a	clear attempt at semi circles, at least 3 same wavelength as incoming wavefronts, by eye	[1] [1]
((b)	speed \div wavelength or 20 \div 2.5 or $v = f\lambda$ 8 Hz or 8 s ⁻¹ or 8 waves/second	[1] [1]
((c)	candidate's (b) OR "the same" OR nothing	[1]
((d)	low frequency signals have longer wavelength (than high frequency signals) OR high frequency signals have shorter wavelength	[1]
		low frequency signals / long wavelength signals diffract more OR low frequency / short wavelength signals diffract less	[1]

2

3	(a	(i)	X-rays	B1
		(ii)	Infra-red	B1
	(b)	(i)	$v = f\lambda$ in any form OR v÷f OR 3.0×10^8 ÷ (2.45×10^9) 0.12 m	C1 A1
		(ii)	(Q =) <i>ml</i> OR 150 × 330 49000 (J) OR 49000 (J) OR 50000 (J)	C1
			P = Q/t in any form OR (t =) Q/P OR (0.65 × 1100) OR 715 69 s	C1 A1
				[Total: 8]

4	(a ((i)	$2.0 - 4.0 \times 10^8$ m/s *Unit penalty applies		B1	
	(i	ii)	(f =) v/ λ or 3.0 × 10 ⁸ /4.0 × 10 ⁻⁷ 7.5 × 10 ¹⁴ Hz *Unit penalty applies	ecf from 6(a)(i) ecf from 6(a)(i)	C1 A1	
	(b) ((i)	55° *Unit penalty applies		B1	
	(i	ii)	sin i/sin r = n or sin 55°/1.5 or 0.54610 33° *Unit penalty applies	ecf from 6(b)(i) ecf from 6(b)(i)	C1 A1	[6]

*Apply unit penalty once onl

5	(a (i)	light of a single wavelength / frequency ignore 'one colour'	B1	
	(ii)	<i>n</i> = sin <i>i</i> /sin <i>r</i> OR 1.52 = sin 50/sin <i>r</i> OR sin <i>r</i> = sin 50/1.52 30.26° at least 2 s.f.	C1 A1	
	(iii)	ray closer to normal in block ray parallel to incident ray emerging from block	B1 B1	
	(b) (i)	$n = v_A/v_G$ OR $n = 1.54/v_G$ OR $v_G = 3 \times 10^8/1.54$ 1.948 × 10 ⁸ m/s	C1	
	(ii)	ray with smaller angle of refraction than red in block i.e. violet ray under red ray emerging ray parallel to incident ray	B1 B1	[9]

6	(a (i)	sound	B1
	(ii)	particle OR mechanical OR compression OR longitudinal OR matter wave	B1
	(iii)	ultra violet/uv	B1
	3.0	$f\lambda$ OR $\lambda = v/f$ 0 × 10 ⁸ /2.5 × 10 ⁸ OR 3.0 × 10 ⁸ = 2.5 × 10 ⁸ λ 2 m	B1 C1 A1
			[Total: 6]

(a	viole	ay refracted away from normal t ray refracted more than red ray in prism t ray further refracted from red ray to screen	B1 B1 B1	3
(b)		= sin 40°/sin r = sin 40°/ 1.52 (= 0.423) 5°	M1 C1 A1	3
(c)	(i)	3 x 10 ⁸ m/s	A1	
	(ii)	same as (i)	A1	2 [8]

8	(a (i) (ii)	x-rays or gamma ra infra red or radio	B1 B1	2
	(b)	$f = v/\lambda \text{ or } 3 \times 10^8 / 1 \times 10^{12}$ = 3 x 10 ²⁰ Hz	C1 A1	2
	(c)	3 x 10 ⁸ m/s	1	1 [5]

9	(a)		expect two internal reflections at sensible angles	1	1
	(b)		angle of incidence at Y greater than critical angle total internal reflection occurs	1 1	2
	(c)	(i)	frequency = velocity/wavelength or $1.9 \times 10^8/3.2 \times 10^7$ = 5.9 x 10^{14} Hz	1 1	
		(ii)	refractive index = 3/1.9 or 1.9/3 = 1.58 (no e.c.f.)	1 1	4 (7)

PhysicsAndMathsTutor.com

7